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Previously reported experiments with a self-propelled body submerged in a fluid
with a stable vertical density gradient have demonstrated -that thb turbulently
,mixed wake first expands more or less uniformly and then collapses vertically
while continuing to expand horizontally (Schooley-&,Stewart 1963). It was also
shown that the vertical collapse of the wake generates internal waves. Essen-
tially two-dimensional experiments have also been used to explore some of the
build-up and decay characteristics of vertical wake collapse induced by a sub-
merged burst of turbulent mixing (Wu 1969; Schooley '1908)': The present paper
reports now experimenta, measurements and a lineai theoretical analysis of the
internal wave field createý, in stratified water by a burst of submerged turbulent
mixing. The forcing function has beer. obtained in integral form for an initial-
value model of wake collapse in terms of a general Brunt-Vaisalri frequency
profile, using normal mode theory, Numerical results have been determined for
the specialized case of a completely mixed circular wake in a constunt Brunt-
WWis&li profile. These resuits are compared to the experimental measurements.

1. Introduction
The concept of internal wave generation by collapse of a region of density

stratified fluid which has been mixed has existed for many years and various
researchers have contributed to the experimental, theoretical or to both sides of
the problem. Schooley & Stewart (1963) measured the initial phase of collapse in
the wake of a self-propelled body and demonstrated that wave-like effects
appeared at the surface. Furthermore, they convincingly showed that the general
characteristics of the surface phenomena can be explained by the existence of a
number of modes of internal waves generated by the wake collapse. Their
analysis, however, was not aimed at predicting the amplitude of the internal wave
motion from features of the initial mixed region. Stockhausen, Clark & Kennedy
(1966) also made observations relating to wake collapse behind a self-propelled
body. They were concerned chiefly with the shape of the wake during the initial
expansion and subsequent collapse and did not analyse their results from the
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point of view of internal wave g~neration. Observations on the details ofa mixed
region during collapse in a two dimeiisionallaboratory model were also iakenby
Wu (1969)., The mixed region in this case was formediby stirring a contained

:semii-bklindrical region at one end-wall of a tank containing stratified fluid. The
collapse was simulated by quickly and smoothly removing the containing
apparatus and allowing the mixed fluid to flow into the stratified- fluid. Very
d4etailed results were obtained showing the subsequent shape of the mixedregion.

The internal wave patterns associated with the collapse were also determined and
results giving the phase configuration were obtained. No amplitude information
was illustrated;-however, it was olserved that iwaveheights as large as 0.2 of the
mixed region radius vieroeormed.

A wide range of theoretical results have been obtained conperning internal
waves in generel. Most results have been ojtainedfor linear moe..ls. A very com-
prehensive treatment of the problem (for general transient or steady generation) is
given by Lighthill (1967) and further detailed theoretical work -with careful
experimental verification is given in Mowbray -& Rarity (1967). The former is
concerned with a geneial treatise of dispersive waves in homogeneous media and
one section deals specifically with internal waves generated behind a vertically
moving steady disturbance. Experimental verification of the phase configuration
is provided. The latter publication provides a complete linear theoretical
treatment for forced internal waves in a (predominantly) homogeneous medium
and deals at some length with the-asymptotic solution of the Cauchy-Poision
problem. The observational data provided confirms the theoratical predictions
regarding phase configuratior9. No comparison of amplitudes was undertaken.
Impulsively~generated internal waves in the atmosphere have been studied quite
intensively (Pierce & Posey 1970) but not from the point of view of generation by
wake collapse. Very recently, a linear theoretical analysis has been performed on
wave generation by wake collapse (and other causes) by Miles (1970). A non-
linear numerical analysis of the problem has been undertaken by Wessel (1969)
with a comparison to the experimental resultsof Wu (1969).

The purpose of the present paper is to outlihie further experimental results
concerning waves generated by mixed region collapse and to present a compara-
tive theoretical analysis, including prediction of amplitudes using a very simple,
higlilý. idealized linear model. The experiments were performed in a small
laboratory tank in which a densitygradient was created by maintaining a vertical
temperature gradient in water and the mixed region was formed by rapidly
stirring a small part of the fluid. The internal waves were measured by a ther-
mistor placed near one wall of the tank. Results from four density profiles are
illustrated. The theoretical model is based on the theory of linear modes and is
used to predict the subsequent motion due to the internal waves (amplitude and
phase) in terms of the maximum turbulent expansion of the mixed region. The
forcing function in this case is composed of the initial buoyaneý defect moments
in the mixed region and is calculated following a scheme originally proposed by
Lighthill (1904, private communication). Viscous effects are included.

Sinice linearized internal wave models are readily amenable to mathematical
treatment it is believed that this comparison of theory and experiment is doubly
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valuable-it not'onlyprovid Aiackground on which to understand th.e experi-
mental results but-als0 6-,P# useful indication of how'detailed& a mathe-
m atfal-,model is nheded6!i crdei~to make useful quantitative predictions of
resultifig~wave fields.

2, Discussion' ot e•rý.,"imental conditions and results
Figure 1 (plate 1),'r,!a,_picture of the 'two~dimensional' transparent cell that

was 1ised, with dim. ,,iiAs 30cm widej 7,3cm deep aid 2.5cm thick and grid
lines'2 cm apart.-•,• '• ,i experiments the cell was completely filledwith distilled
water betw6en flheld 4tm arid top popper strips. Stable stratification of the water
(more dense belowv -r, n,5 above) was produccd~by cooling the lower copper strip
and heating the r,,, rý # one. The amount. of cooling and heating wa" controlled by
'the polarity and ,mount of electrical direct current applied to commercial
thermo-electic -, ots (inodJmrn Peltier effect devices) attached to, the copper
skips. For efflici" q, ada stAble operation the unattached surfaces of the 1.1 cm
thickthermo-el "sic devices were held at a constant temperature by circulating
water through, cekots as shown invthe upper pait of figure 1.
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Tomperaturo reforrOi to 4 cm depth (0C)
rxounsr 2. Tomperaturo va. depth profiles. --- , profile 1; - -- , profile' 3;

- , profile 4; .. , profile 6.

Figtire 2 shows Lbur different profiles of temperature vs. depth estaV' ,shed by
using various combinations of electrical curreiht through the therri•,-electrio
devices (not all shown in figure 1). For example, profile 2 was estah) i'ncd by
pqsaing 10A with polarity to cool the bottom and 10A with polarity fo neatLlho
top. Profile 3 ,equired 5 A cooling current on the bottom and'5 A lheati.gon top.
Profile 6 was established with zero bottom current and 2.5 A heating at tro top.
Profile 4 required 10 A bottom cooling and zero top current. In this last case there
was slight coolir~g at the top because the constant-temperature water circulating
through the upper water jackets was somewhat cooler than the ambient tempera-
ture. The cooling was by conduction through the structure of the thermno-
electric devices attached to the upper copper strip. It took about 2 h after the
start of current flow for the temperature profiles to stabilize at the values shown
in figure 2. (Profiles 2 and 5 are omitted from this report.)

Iri. ' M 5z
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Figure 3' shows the four toifiperature ,pr6files of figure 2 converted to four
'corresponding-density profiles. The conversion wis made usin4ghandbook data
Srelating pure water temperature with density, together with a reference tempera-
ture for each temperature profile curve. The horizontal scale is in the ot density
unit commonly used by oceanographers (Sverdrup et al. 1942). In this case
o-t = (p- 1) x 103, where p is the water densityin g/om3 . The negative abscissa
values are density expressed in parts per thousand, and density incredcas from
left to right,

7 Y-T-

S6--

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
o'-1 (p-1)×X 103

Founu 3. Density (o't) v8. depth profiles. 0-0, profilo 1;
x - - x, profile 3; O--, profilo 4; M -.- a, profilo 6.

For density profiles 1 and 3 the density gradient with respect to water depth,
dorldz, is greater at the top and decreases with depthi. For profile 6 the density
gradient is very nearly constant. Profile 4 shows a region where density decreases
with depth near the top, then a region of approximately zero gradient which
changes to a region of approximately constant-densitygradient near the bottom.

A prominent feature near the centre of figure 1 is a 1.3cm diameter device
which is a non-rotatable mixer. A lever systemconnects it with a drive mechanism
that will move the mixer forwvard'andbackward about +1 cm ten times in about
2-2.5 see on, demand. This vigorous back-and-forth movement will generate a
pulse of turbulence which will first expand and then collapse vertically (Wu
1969; Schooley 1968). The restoring force is gravity acting on p and datJdz. It
is the resulting change in the temperature structure with time after mixing
which makes it comparatively simple to study -'he internal wave structuir for the
various temperature or density profiles of figures 2 and 3.

Figure 1 shows a small thermistor bead projecting atbout 2.5 mm through a
small hole in the upper copper strip, directly above the mixer. The thermistor
was connected to a calibrated recording system which yielded a time record of the
temperature at this point before, during and after mixing. Since the thermistor
was used in a manner which was relatively insensitive to velocity it recorded
temperature changes duo to vertical motion of the stratified water at the point of
measurement. A second thermistor bead is also shown projecting through a hole
in the copper strip, near the centre of the right half of figure 1. Although not visible,
there are small holes for inserting thermistors at four different places along the
copper strip on each side of the centre-line (o).
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Figure 4sjhows the results of experiments. In figure 4 (4&) the timne scale proceeds
Adownward for 40 sec after the start of mixking and the horizontal scaliem easur'es-
distanice from zero at the centre of the upper copper strip ( i) adpoeds 15c
to the right. The.burves represent smoothed processed dat ori'xaevýeial expeii-
ments using profile 1. The loing-dashed curve's are regions-whe~re t~ile thermistor
recording system showed positive mnaximumi readings, compared to the situaticin
before mixing. The short-dashed icurves show regions of negative maxinium,
temperature readings. The solid lines are the regiowt.kyherb the temperature was.
'the same as before inixing.

Distacep right of cantre-lino (cm)
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FZGunE 4. Exporirnontally dotormined constant phaso lines. (a) Temperature profile 1,
(b) tempprixtiM' p.ofllo d',(c) tomporaxturo profile 0, (d) temperature profile 4.

~The pattern revealed by figure 4 (a) is that of a series of internal waves initiated
by a pulse of turbulence caused by the 1-3 emn diameter niiver, 4'5 cm, below thle
upper water boundary and on the centre-line of the experimental cell. To save
space, only the right'half of the internal wave pattern is shown. A similar symi-
metrical set of internal waves also opeurs to-the loft. At various places in the
negative and positive regions of the internal waves the approximate amplitudes
of the temperature deviations are shown. Since the water near the top was warmer
than that below, a negative temperature indicates anl upward component of
water flow and a positive temperature means a dlownward component of floW.
The farst convergence due to the vertical collapse caused the strong positive wave
which grew from about + 0- 15 0 near' the centre to + 0-5 '0 about. 7-5 cm from
the centre.

Internal wave absorbers were used at the right and left ends of the cell (not
shown in figure 1) in an attempt to minimize end reflexions. However absorptier..i
was not complete and quantitative data was not attempted when it. was thougho
that reflexion interference might be present.

Figure 4(b) is thle same as figure 4 (a) except that it is for profile 3 instead of



184 A,.:H. ,cioley and B3 A. fuijts

profile 1. In this case the figure shows experimental points to give an example of
the amount and consMtency of the original data. The temperature gr..dient is
less in figure 4 (b) than in figure 4 (a) 4nd~fbr this reason the initial negative wave
was too small to be measured. The first wave in figure 4(b) is due to the first con-
vergence caused -by- the vertical collapse of the initial turbulent divergence.
The internal waves for the profile 3 condition (figure 4b) are shown to travel more
slowly thani for the stronger temperature gradient profile I (figure4a).

Figure 4(c),is for the weak and quite linearpro-Me 6. A weak-temperature
gradient makes temperature~variatione due to the internal Wtaves more difficult
to measure.'However, enough-data are available to show that the internal wave
speed is still'less than for the previously discussed stronger gradients.

Figure 4(d) shows the internal waves when profile 4 was used. In this case
thtre was a rather wfvak gradiernt at the mixer depth withlan isopyonal inter-
mediate region aiove. At the top the water was slightly colder above than below,
but apparently not enough toinduce convection. The results of the experiment
show slowly-travelling internal waves where the collapse of the initial turbulent
pulse induces,first a negative anid'then a positive temperature wave. This is the
reverse of figures 4 (b) and 4 (c) and is due to the change in the sigp of the gradient
near the top for profile 4 compared to the case for p]ofiles 3 and' 6.

3. Theoretical analysis
In this section a theoretical model which is based on the conditions which'

prevailed during the experimcntation is discussed. Calculations using this model
have been made and are presented for comparisonwith the recorded data.

A number of simplifying and idealizing assumptions have been used, most of
which are common to the first-order study of internal wavei (e.g. Alowbray &
Rarity 1907). Besides the usual assumptions of linearity, Boussinesq approxima-
tion and no molecular diffusion of those properties that define the density, the
following more specialized assumnptions are made: (i)ý Molecular viscosity is
included'by means of a perturbation expansion, following Dote (1908). This
assumption will be dealt with more fully later. (ii) The initial disturbance, and
thus the resulting flow pattern, is strictly two-dimensional. (iii) The initial velocity
structure is zero. (iv) The end walls are infinitely distant. (v) Thq. analysis, later Can,
is particularized to the ease in which the Brunt-ViiisMlO frequency is independent
of depth. 1t is unfortunate that more information was not available about the
degree of mixing prior to collapse. However, it is expected that, at least over the
area of the stirrer, mixing was virtually complete and any incompleteness was
inear the edge of the mixed region. If this were the case, it -' juld show up in the
resulting wave field mainly as a deficiency of high-order modes. It will be shown
below that for the comparison with the experimental data, low-order niodes are
dominant (owing to geometrical coupling and viscous effects). For the present
problem therefore, the simplest mathematical representation of the initial state
will be used, namely a perfectly mixed circular region.

Of all these assumptions, (iii) and (v) are probably Aho most umntke the experi-
mental conditions for short-term observations. Initially, and very near the
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'edge' of tbe mixed region, all assumptions (excep}tpossibly (iv)) are expected to
break down. However, this breakdown should applyr mainly~to very short length-
scales, and since their group veiooities are low and viscous damping hgh they are
not expected to contribute ma6e&ially to the flow pattern. A.lso, the turbulent
velocity structure existing initially will' be most energetic in length-scales 19ss
tlan~the initial diameter of the mixed region, and will be almost completely
contaibed within the mixed region; thus the direct coupling between this struc-
ture and the resulting wave field will be low (especially for waves long compared
with the initial diameter).

Non-liiiearities in the resulting Wave field may be important for a short time
after the beginning of collapse and near the mixed region. An upper estimate for
the vertical amplitude of wave motion is ja (Wu 1969); where a is the radius of
the mixedi 'gion, thus the zatio of the non-linear terms in the equations of motion
to a typical linear term is given by zak, where k is the wave-number of the wave-
i eid.I From figure 4and table I the largest value of this parameter is 0.35 (profile 1).
Fb,•- regions or times removed: froii, theonset of collapse this 1parameter is
expected tobe substantially reduo•d (figure 7 (a) or Wu 1909).

The position at whiui,tho measu~invhts were taken is very near:- solid boun-
dary so there is the posbibility of a substantial modification of the inviscid wave-
pattern );r boundary-layer effects, Aldo, since the Brunt-VWiskl,,frequency is of
order I per see there is the likelihood of appreciati'e viscous dissipation within the
body of the fluid and by the walls. It was not expedient to, perform a new set of
experimients (the ones reported here were done some years before the theory was
undertaken), so instead, these viscous effects are included in the theoretical model.
To accomplish this, the perturbation scheme given by Dore will be used. It is
directly applicable to the present problem and so only the results of that investi-
gation will be used. It'is thuis necessary to solve onlythe inviseid equations and
apply the viscous corrections lateo,.

With the previously mentioned assumptions, the inviscid equations of motion
are: al Ow

F.+T = 0, (1)

p0( t + t= 0, (2)

po(,A. +-OP = (3)

OP O(OW) 0(4)
Vt

with x h•rizontal and perpendicular to the axis of the mixed region, z positive
downwards,po(z) the density profile before mixing, p the instantaneous difference
between the total density and Po, ,p the instantaneous difference between t-e
total pressure and the hydrostatic head, g the acceleration of gravity, it, w the
velocity components in the x,.z plane, and t the time. The boundary conditions are

tv = 0 at - = 0, D for all time, (5)
iw remains bounded as x->o ±o. (0)
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The initial conditions are

p,u,w =0 for all x, z (7)

and p = po(Z)f(x,z). '(8)

The problem is amenable to treatment by a one-sided Fiurier transform in
time. Thus, if

= ~~~t(9)

(and similar represeitations for all the other dependen. var~f~ia'O.), equations (1)
to (4) and (8) reduc•e to the following equation (using the Boukinesq approxi-
mation): 02i ( N2/ _ 2i_ _ g 82f

TZ2 +( - 7 2 j ) X2  ;w28X21

where N(z)

is the Brunt-VWisMl. frequency.

To reduce the problem further, lot
i = Z, 01(Z)F (x, (I11)

n

where On(z)4is an eigenfunction from an orthonormal set defined by
+o. +1 a = O0 (On(z) = 0 at z = 0, D) (12)

Dif 02f
and thus " =2) ' dx. (13)

Since I is a direct representation of the buoyancy at time zero it must vanish
outside the initial mixed region, It is also necessary that 0,(z) be the nth member
of a complete set; otherwise an integral term (representing a continuous dis-
tributiOn of modes) is required on the right-hand side of (11). It is shown by
Courawit & Hilbert (1953) that 0n(z) is complete if r possesses continuous first
and piecewise continuous second derivations (in z), i.e. from (10), if N (or!) is at
worst piecewise continuous in z. Thus the solution of (13) satisfying (0) is

.Z'(x = I- Yic' (einf.nzOer'11-7t(n) di; + e-hXf-G eIln'II(7;) *y. (4

Let the initial mixed region be symmetric in x with its midpoint at (0, zo) and its
maximum horizontal extent given by 2a. Then the total wave field exterior to the
initial mixed region can be obtained from

.F(x -_ -ice,, e-111-1 eo osla•)I(?/)dV/ (11 > a). (15)

Using the inverse transform to (9),

W=1 '+Co-ig /a CCar!X
wf2n•J--l - _ia_,e ,+,o~tO.(z)4 cos (a')1(0) di;) dw, (10)

where e is chosen to ensure that the integration is below the singularities of
the integrand.
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The initial buoyancy function, T(x) is given by

AxfD z) Obn(z) liz,

where, for a circular, completely mixed region,

f(x, z) = (po(z1)/po(z) -1)Hnx+ a) H(a -. x) •(z =. z0 + (a2 - x,)i) H(z0-•z -(a2 - x ).
(17)

Density, p
Fiaunn J. Theoretical model or the initial density vs. depth

through the centro-lino of the mixed region.

Hero z. is the depth of the centre of the region, H is the, Heaviside unit function
and po(zl) is the density of the mixed region (see figure 5).

In terms of the Brunt-ViiiiilE frequency,

pO(z) = OJ

or, using the Boussinesq approximation,

eP 1.... ^A12(Z)dZ (18)
Thus, I = ( + a) / , , 0.( W N(z') dz'dz. (19)

The general solution reprcsorAtid by equations (19), (16) and (12) will now be
restricted to the present experimental easo. The density profiles shown in figure
3 indicate that the approximation N2 = constant should provide most of the
pertinent features of ti'o internal wave field. With N = No and z =zo,

OW 21 sin (iz/rzD) (20)
(21)
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and

fo os(a71 4 = 120~-p )] - "2 (D(I W'1Nw2/N) (22)

Where J2 is the Bessel function of second order. Therefore, interchanging the
order of integration and summation in (18) '(which is permissible by the rules
governing Fourier series representing generalized functions),

= sin (nnilD) cos (n7'zoJD) +C-ic I ann' .i-r.

nt-1 nir7 " d00-ic DI- )

(23)

This expression can be simplified by contour integration. For 1 > 0 it can be
shown that there is no~rodification to the value of tlhis integral if the integration
path is closed by an-infinite semicircle in the 'upper half plane. For t < 0 the
lower half plane can be used. Thus the value of w arises only from integration
around'he singuharities o) = ± No (in a.). Since these are branch points a cut is
nec8sary and it is convenient to take the cut along the real co axis between ± No.
Integration around the branchloints produces no contribution, so (23) reduces to
an integration along the bottom of the cut from - No to + No and an integration
along the top in the opposite direction. In appendix A it is shown that

d(a2)/d(( 2) > 0

near the real (, axis and that this condition togAther with the condition of
boundedness at large IxI leads to the restriction t'iat the real parts of to and an
must have 'hic same sign for to slightly below the real axis. Therefore, on the
bottom of the out aJ > 0 for o > 0 and on top an < 0 for &) > 0.

Finally, with e - 0,
Sill11/inz\ Innz0\C N. J2(an7T/D(l-o"2 /AR2 )k)

w sin -D-)cos 0 •oNf 2- 1--

X Bill WCos tD l))dM.w (24)xinotoskD(j,,2jco•_'

For I < 0 there are no singularities. Thus

wv=O for t<0. (25)

Using the linearity assumption and the transformation to = NAcosO,t the
amplitude C(= fwdt) is given by

4a:- - (n \ tim.eo(nn7 "_ ( an', 217n7x
ly- 51 * C 0.4 - . Cos (NI t CosO) Cos d.

.0 (26)
This represents the inviscid solhtion.

t It- aa easily be seen that to tl:is approximation 0 represents the angle between the
vertical and the local lines of constait phase or 'crest' lines of that particular frequency
component. If 0 = 0 the lines of constant phase are vertical and if 0 = . tho lines are
horizontal.
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To ip-orporate the most important effects of viscosity it'is necessary to return
to eq,cation (16) and perturb the frequency wd in eft and to modifyC to allowfor
bouniary-layer effects. The resulting equations- are obtained in appendix B.
S6me general characteristics of the form that the internal wave pattern possesses
will-now be outlined.

The finite depth of the model has resolved the pattern into an infinite series of
modes. (This situation remain, true for an infinite depth if R¢ is piecewise con-
tinuous and-+- 0 as z-+.co). The horizontal inviscid group velocity of the nth mode,
0gn, is given by

CNDn2g2 •r°D in3 0. (27a)

0'5 Me 1M0d Modc4 - N0 .I / oe4 0

-0-5 -1.0

-50 -5'0-

2-0 Mode 23 2 Mode 20 0
5-20 --20-

20 Mode I 0- Mode 2

0• 0
-2.0'2--0-

0 5 n 15 2 41 8

(a) Distanco in units of D (b) Time in tunits of tho Brunt-ViWislila
period

Fcut•tE 6. Illustration of tho mode structuro of an inviscal internal uavo field. Tho inode
havo been separated to show zornparativo foAtures. (a) wave hiJitt at arn ratflant as a
funotion of distauco from the centre-line, Xqt = 50; (b) wave, height at one particular point
as a function of time fromn beginning of the 6ollapso, x•D = 2. (For this oxamploe-N = 0-25
sea-', a = 2-05 cm, D = 7.3 cm, z = 0.3 cm, -0 = 4-5 cm and viscosity = 0.)

Also, the horizontal phase velocity 0,, is

Lo = j Y NDsin 0. (27b)

The maximum group velocity N0D/n (which is the same as the maximum phase
velocity) increases directly with No. This is in accordance with the experimental
observation that the wave velocity increases as the densitk' gradient (or A10)
increases. Also, the horizontal extent of the wave-pattern for each mode is limited
at any instant and at higher mode numbers the Himnitation appears nearer the
centre-line -f the mixed region. Within this horizontal limitation a wave-field
stretching back to the centre-line can exist.

Sstationary phase reduction of equation (26) (with X0 large) indicates that a
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stationary phase contribution exists for every point within this possible wave-
field. Equation (27) gives the value of 0 at which the phase of equation (26)
is stationary for ixllt = C'g,. As lxi -> 0, 0-8- 0, the horizontal wave-number
nif/DtanO-+oo and wo->AN0. Therefore each mode gives rise not to a localized
group of waves but to a field extending from the centre-line to the limiting
extontfor that particular time. The wavelength within the field increases from
zero to co over this same region Nigure 6 (a) illustrates this behaviour.

As a function of~time at a given position the wave-pattern is essentially zero
until the most rapid (it = 1) mode arrives (at t, say) and exhibits a continuing
oscillation in time with a frequency rising from zero asymptotically at AY0. At 2t
the second-mode arrives and exhibits a similar behaviour in frequency and so on
for all the modes. This is shown in figure 6 (b).

If only one mode is pnsent the wave-field will exhibit dispersion characteristics
pertaining to that mode. If more than one mode is dominant, as is true for the
example used in figure 6, interference effects will also be apparent.

The damping effects of viscosity are most pronounced for high modes and high
frequencies (0 ; 0). Waves nearest the centre-line at any given instant or waves
appearing at later times at any given position are reduced the most. The local
frequency is also reduced by viscosity.

All these general characteristics are in agreement with the measured patterns
shown in figure 4 even though these do not satisfy the condition h->.. The
w•,ly major exceptions occur in the vicinity of the' initial mixed region. In figure
4(a) the distance between zeros along the 10sec line increases away from the
centre-line. The same behaviour can be seen in 4 (b) along the 20 see line. Also, the
time between zeros along the 5cra line in figure 4(b) decreases towards later
times (although in figure 4(a) the bottom curves indicate a slight opposite
tendency). Iiowever, not only may asymptotic arguments be expected to fail
there and viscous effects dominate, but the region lxi < a (for all z) has been
previously excluded from the domain of applicability of the solution. It is also
apparent from the measurements that a simple wave field e:dsts, implying the
presence of only a few w. Ades.

To accomplish a direct comparison of the theory with experimental results
tile temperature excursion from ambient was calculated using AqP = ý(dT'dz)
evaluated ati z, the depth of tile thermistor bead, for each profile shown. The
values used in equation (B 3) are listed in table I. Each of theme values was o)b-
tained from the experimental data. The liated values of No are ti(e averages of the
Brunt-Viiisiili' frequency over the total depth of the tank for each profile. In
each ease the average was calculated from an exponential curve of N(:) fitted
with a least-square technique to individual values of N obtained from figure 3.
'rihe accuracy of N. is estimated at ± 1n%. Maximum vertical expansion of the
turbulent pulses was determined by (lye and cinematography teehiniquos
(Schooley 1968). One-half the expansion determined a to an aeeuritey of about
± 10%.

Tht, values of viseosity listed were ,obtained fi'on standard hamidhook tables
and pertain to the nevasured valuvs of temperatures: j, eorreslmondls to all average
throughout- the tank, r' corresmponds to thie value at the thermistor dept h.
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It was not expected that mode I would be important since it represents fluid
travelling all up or all down in a given column. Instead the initial buoyancy
pattern is such that it would couple well into modes which represent a downward
velocity above zo and an upward velocity below-z0 . If z were exactly half of D, the
flbw would therefore be mode 2 with contributions from the other even ordered
modes because of the initially round shape. In fact, in (26) all odd modes do

dT/dz
Profilo a (orm) No (sea-') (T0/em) m, (ogs) (ore)

1 2.00 1.19 11.1 C"000 0-2;0O
3 2.05 0.08 3"81 0.009 0'300
6 2.35 0.41 1'18 0.010 0'325

'rmAII• 1. z- = 4.5 cmn, D = 7.3 cm, U = 0.01 oe/see&

vanish under this condition. With the present ratio of z,/D = 0.616 it is expected
that mode 3 will also be important since the eigenfunction fii n- 3 has a zero
at z.D - 1. A-large contribution from modes 2 and 3 is apparent in the extmplo
shown in figure 6. For the calculations used in the comparison with the nm sarured
data enough modes were included in the summation to ensure stability of ono part
in 101 in the final value of C. The necessary number of modes ranged friom 4 at.
largeoI and • to 30 at small IxI and .Typically, mode 2 was dominant with smine
substantial contributions from modes 3 and 6.

5 '72 8 '26 12 "7 5 '72 8 "26 1 2 "7 5 '72 8' 26 12 '7

d . ... :2. . . !

o2 0

30 ,. 
.

. .-

4004 'C 1-0- 2C
Profile I Profile 3 _ _ _ __"i'-i 0.1 'C

Proflie 6
Fxounm: 7 Tomperaturo excursion tma. time. -, theoretical curves; .... experimental valh,,.
The position of each line is in scale with its distanceo from the centre.lino. The distances in
centimetres are shown above each line.

The comparison is shown in figure 7. The (lotted lines represent measured
data, the solid lines are the theoretical curves. At least two sets of measured data
were obtained for each profile. The time origin for the calculated curves has had
one adjustment for each profile to provide a visual 'best' fit to the measured
curves. This is considered permissible because the instant when collapse began is
not known experimentally. This is because the concept itself is an idealiza-
tion: collapse can occur during the entire stirring and turbulent expansion
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interval. Also, at small change in N. or -iy variation, in the Brutm-Vaisala
frequency with depth will affect the velocity of the waves vithout appreciably
affecting their amplitudes, thus effectively producing a diffeienco between oxperi-
mental and theorotical time origins. The time shifts actually used are 1.6, 1.0 and
4.0 see for profiles 1, 3 and 6 respectively. As in figure 4, tile tin~o origin refers to
the instiint the mixer was turned on. For each curve the distance in centimetros
from the centre-lino to the base-line at which those measurements were obtai;•e"'
is shown by the number at tile top of each figure. The excursions from tlid'bas6-
line represent-the temperature deviations from ambient and are scaled at the
bottom of each figure. For profile 1 the lit is good only for the first wave. After
that the theoretical curves predict more waves than are experimentally found

o 5-72 8.26 12.7

--

Floulnu, S. C1loiahtted tomporaturie exoursions for profilo 3 with zero viscosity. The number
abovA eauh lino is its horizontal distanco fromf thi centre-lino in centinetres.

(except for the measurements at 12.7 cm). Nevertheless the amplitudes of the
theoretical excursions are very similar to the mecasurements. For profiles 3 and 0
the measurements and the theoretical curves are in reasonably good agreement.

The invisoid solution for profile 3 is shown in figure 8. Yt can be ,een that for
this scale of motion viscosity is indeed important and over the recorded time
in(ervad reduces the amplitude of the wave typically by at factor of two. Tite
degree of matching between (B 1) and (22) was tested by sample calculations on
profiles 1 and 0. Equatin (B 1) was used in (B 3) with ', = 0 (P -t 0) and compaired
with the results for #• in place of r,, in (B 3). Both functions gave the same results
with differences of about 5 %.

Equation (20) indicates that the wavo amplitude is fairly strongly dependent
on the radius of the initial mixed region. If a/D < 1.

J.,,(an•/DsinO) ;, (aunt/DsiniO)2 x
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for low mode numbers and low frequencies. In this case goc a 4.If the mode number
of the dominant waves is large enough or tile frequency of the dominant waves is
small enough, or if alD = 0(1), J2 (anmr/D sin 0) is essentially independent of a and
so0 •Co a 2 .

4. Conclusions
It has been shown ttat the internal wave amplitudes generated by the two-

dimensional collapse of an initially turbulent reg'on can be predicted (at least
near a'boundary) using a higtlyC'idealized linoea model. Theoaccuracy of the
predicmion is only loosely determined but for thwse measurements it is approxi-
m.ntely the same as the expeiimental scatter. The discrepancy in time of arrival
of the waves between thcorý, and experiment, as is indicated by the adjustment in
the time origin of the theoretical values, is believedto be due mainly to two effects:
variations in the Brunt-Vjisiili. frequency from the assumed constant profile and
non-zero mixing time.

Appendix A
The eigenvalue an and the eigeidiniction O,,(z) are defined by

I2 fb (-- / ,, = 0 (n,,(z) =o at z = o, D) (A 1)

and f( 1-) I• 2dz= 1. (A2)

(Equation (A 1) is the same as (12) in the main part of the paper.) Differentiate
(A 1) by w2 and set Do/0o0- = Vf.,

(104 N.j\721 2 n d IN '.. .a; I, " !- - Jl O n = 0. (A 3 )

Multiply (A 3) by,'O*, the complex conjugate of O,,, and integrate over all z, then

CfD (do*df,,___d
2  a D1, =V- dZ + ,V' ' )lfn ,l-,2 Ion d. (A 41,

( dw o'4 o
Take the complex conjugate of (A 1), multiply by •f and integrate over all co.

Since o is real an is real,

fD (v do*d~ Noaf->S~,z0fo~ ~ !'d ;, n onnd
and, from (A 4), -.__A, ( (A 5)

Therefore (da2 )/doa2 > 0 and, in fact, since

f ' 1 f Jn12d0 l.Fd =0 0 ¢Fd
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(by A 3), which is greater than 1, ddc /dw2 > e,/&)2.This shows that the horizontal
group velocity is always less than the horizontal phase velocity.

Let o) = w.-is and a. = a.+iM. Thenfor sminall e,

However, in order that F(x) remains bounded as x-> co, 4 must be negative
(cquatioMl4). Therefore, since e > 0 (equation 16) and daz,/dc•2 > 0, wr and a.,
must havelhe same sign.

Appendix BR,
Using the perturbation expansion setup by Dore, equation (20) represents the

,inviscid outeriolution to the problem. The lowest order 'inner' solution, near the
top boundaryr, is given by

2 )nnz n [ N c-•,2• cos (z(w•/2 )i + ¼in)

+ i[1 - 21 e-*I2i')' cos (z(co/2v)i - *ir)]]} (B 1)

where v is the local kinematic viscosity. It is also shown by Dore tiatt•he fre-
quency in equation (16) must be replaced by a perturbed frequency o),. To second
order.in the expansion

WP -"(16)1~ 2 2MP I sgn (w)2~' - ( 21(jI

T2 (•o'.o+.,I -o] 2 1~ V ] (B 2)

where P is the average of the kinematic viscosities at z = 0 and = - D.
If (B 1) and (B 2) are substituted in (23) and the previously outlined steps are

taken, an equation for C analogous to(26) is obtained. In a eai),iified form

=-.. Cos (-b--!. _: W," 2z( • ¢)j

x [gr cos (wt) cos (a.x) + Vt sin (wt) cos (ax)] dw, (B 3)

where •,, = r +ilfr and c, = c,(o)- io•(eo).
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